CLI Commands Reference¶
Complete reference for all IdeaWeaver CLI commands and their options.
Overview¶
Usage: ideaweaver [OPTIONS] COMMAND [ARGS]...
IdeaWeaver Model Training CLI - A comprehensive tool for AI model training,
evaluation, and deployment.
Features include LoRA/QLoRA fine-tuning, RAG systems, MCP integration, and
enterprise-grade model management. For detailed documentation and examples,
visit: https://github.com/ideaweaver-ai-code/ideaweaver
Options:
--help Show this message and exit.
Commands:
agent Intelligent agent workflows for creative and analytical tasks.
download Download a model from Hugging Face Hub
evaluate Evaluate a model using lm-evaluation-harness with...
finetune Supervised fine-tuning commands with LoRA, QLoRA, and full...
list-tasks List all available evaluation tasks from lm-evaluation-harness
mcp Model Context Protocol (MCP) integration commands
rag RAG (Retrieval-Augmented Generation) commands
train Train a model with AutoTrain Advanced.
validate Validate a configuration file
Model Management¶
download
¶
Download models from Hugging Face Hub.
ideaweaver download [OPTIONS] MODEL_ID
Options:
--revision TEXT
: Model revision to download (default: main)--cache-dir PATH
: Custom cache directory for models--token TEXT
: Hugging Face API token--help
: Show help and exit
Examples:
# Download a model
ideaweaver download microsoft/DialoGPT-medium
# Download specific revision
ideaweaver download microsoft/DialoGPT-medium --revision v1.0
# Download with custom cache
ideaweaver download microsoft/DialoGPT-medium --cache-dir ./models
quantize
¶
Optimize models through quantization for faster inference.
ideaweaver quantize [OPTIONS]
Options:
- --model PATH
: Path to model directory or Hugging Face model ID
- --method TEXT
: Quantization method (int8, int4, fp16)
- --output PATH
: Output directory for quantized model
- --config PATH
: Quantization configuration file
- --help
: Show help and exit
Examples:
# Basic int8 quantization
ideaweaver quantize --model microsoft/DialoGPT-medium --method int8
# Custom output directory
ideaweaver quantize --model ./my-model --method int4 --output ./quantized
Training & Fine-tuning¶
train
¶
Train models with flexible configuration options.
ideaweaver train [OPTIONS]
Options:
- --config PATH
: Training configuration YAML file
- --model TEXT
: Base model name or path
- --dataset TEXT
: Dataset name or path
- --output-dir PATH
: Output directory for trained model
- --epochs INTEGER
: Number of training epochs
- --batch-size INTEGER
: Training batch size
- --learning-rate FLOAT
: Learning rate
- --help
: Show help and exit
Examples:
# Train with configuration file
ideaweaver train --config config/training.yaml
# Quick training with CLI options
ideaweaver train --model bert-base-uncased --dataset ./data.csv --epochs 3
finetune
¶
Supervised fine-tuning with LoRA, QLoRA, and full parameter methods.
finetune lora
¶
LoRA (Low-Rank Adaptation) fine-tuning.
ideaweaver finetune lora [OPTIONS]
Options:
- --model TEXT
: Base model for fine-tuning
- --dataset TEXT
: Training dataset
- --output-dir PATH
: Output directory
- --rank INTEGER
: LoRA rank (default: 16)
- --alpha INTEGER
: LoRA alpha parameter (default: 32)
- --dropout FLOAT
: LoRA dropout rate (default: 0.1)
- --epochs INTEGER
: Number of epochs (default: 3)
- --help
: Show help and exit
Examples:
# Basic LoRA fine-tuning
ideaweaver finetune lora --model microsoft/DialoGPT-medium --dataset ./data
# Custom LoRA parameters
ideaweaver finetune lora --model bert-base --dataset ./data --rank 32 --alpha 64
finetune qlora
¶
QLoRA (Quantized LoRA) for memory-efficient fine-tuning.
ideaweaver finetune qlora [OPTIONS]
Options:
- Similar to LoRA with additional quantization options
- --bits INTEGER
: Quantization bits (4, 8)
- --double-quant BOOLEAN
: Use double quantization
finetune full
¶
Full parameter fine-tuning.
ideaweaver finetune full [OPTIONS]
Options: - Standard training options without rank/alpha parameters
Evaluation & Benchmarking¶
evaluate
¶
Evaluate models using lm-evaluation-harness and custom benchmarks.
ideaweaver evaluate [OPTIONS]
Options:
- --model PATH
: Model to evaluate
- --tasks TEXT
: Comma-separated list of evaluation tasks
- --batch-size INTEGER
: Evaluation batch size
- --num-fewshot INTEGER
: Number of few-shot examples
- --output PATH
: Output file for results
- --device TEXT
: Device to use (cuda, cpu, auto)
- --help
: Show help and exit
Examples:
# Evaluate on multiple tasks
ideaweaver evaluate --model ./my-model --tasks hellaswag,arc_easy,winogrande
# Custom few-shot evaluation
ideaweaver evaluate --model ./my-model --tasks hellaswag --num-fewshot 5
list-tasks
¶
List all available evaluation tasks.
ideaweaver list-tasks [OPTIONS]
Options:
- --category TEXT
: Filter tasks by category
- --search TEXT
: Search tasks by name or description
- --help
: Show help and exit
compare
¶
Compare multiple models on the same benchmarks.
ideaweaver compare [OPTIONS]
Options:
- --models TEXT
: Comma-separated list of models to compare
- --tasks TEXT
: Evaluation tasks for comparison
- --output PATH
: Output file for comparison results
- --plot
: Generate comparison plots
- --help
: Show help and exit
Examples:
# Compare three models
ideaweaver compare --models model1,model2,model3 --tasks hellaswag,arc_easy
# Generate comparison with plots
ideaweaver compare --models model1,model2 --tasks all --plot --output comparison.html
RAG (Retrieval-Augmented Generation)¶
rag init
¶
Initialize a new RAG system.
ideaweaver rag init [OPTIONS]
Options:
- --vector-store TEXT
: Vector store type (chroma, qdrant, faiss)
- --embedding-model TEXT
: Embedding model name
- --llm TEXT
: Language model for generation
- --config PATH
: RAG configuration file
- --help
: Show help and exit
rag add-documents
¶
Add documents to the RAG knowledge base.
ideaweaver rag add-documents [OPTIONS]
Options:
- --path PATH
: Path to documents or directory
- --recursive
: Process directories recursively
- --chunk-size INTEGER
: Document chunk size
- --chunk-overlap INTEGER
: Overlap between chunks
- --help
: Show help and exit
rag query
¶
Query the RAG system.
ideaweaver rag query [OPTIONS] QUERY
Options:
- --config PATH
: RAG configuration file
- --top-k INTEGER
: Number of retrieved documents
- --temperature FLOAT
: Generation temperature
- --save-context
: Save query context for training
- --help
: Show help and exit
Examples:
# Basic RAG query
ideaweaver rag query "What is machine learning?"
# Custom retrieval parameters
ideaweaver rag query "Explain neural networks" --top-k 10 --temperature 0.7
MCP (Model Context Protocol)¶
mcp list-servers
¶
List all available MCP servers.
ideaweaver mcp list-servers [OPTIONS]
mcp configure
¶
Configure MCP server connections.
ideaweaver mcp configure [OPTIONS] SERVER_NAME
Supported Servers:
- github
: GitHub integration
- slack
: Slack workspace integration
- aws
: AWS services integration
- filesystem
: Local filesystem access
mcp query
¶
Query data through MCP servers.
ideaweaver mcp query [OPTIONS] SERVER_NAME QUERY
Examples:
# Query GitHub repositories
ideaweaver mcp query github "List recent issues in my repository"
# Query Slack conversations
ideaweaver mcp query slack "Summarize today's discussions"
Llama.cpp Integration¶
llama convert
¶
Convert models to GGML format for llama.cpp.
ideaweaver llama convert [OPTIONS]
Options:
- --model PATH
: Model to convert
- --output PATH
: Output GGML file
- --type TEXT
: Conversion type (f16, f32, q4_0, q4_1, q5_0, q5_1, q8_0)
- --help
: Show help and exit
llama inference
¶
Run inference using llama.cpp.
ideaweaver llama inference [OPTIONS]
Options:
- --model PATH
: GGML model file
- --prompt TEXT
: Input prompt
- --max-tokens INTEGER
: Maximum generated tokens
- --temperature FLOAT
: Sampling temperature
- --help
: Show help and exit
Workflow Integration¶
crew
¶
CrewAI operations for multi-agent workflows.
ideaweaver crew [OPTIONS] COMMAND [ARGS]...
Commands:
- generate-storybook
: Generate storybooks using multi-agent approach
- setup-crew
: Configure CrewAI agents
- run-workflow
: Execute custom CrewAI workflows
zenml
¶
ZenML pipeline operations.
ideaweaver zenml [OPTIONS] COMMAND [ARGS]...
Commands:
- init-pipeline
: Initialize ZenML pipelines
- run-pipeline
: Execute ZenML pipelines
- list-pipelines
: Show available pipelines
Utilities¶
validate
¶
Validate configuration files.
ideaweaver validate [OPTIONS] CONFIG_FILE
Options:
- --type TEXT
: Configuration type (training, rag, evaluation)
- --strict
: Enable strict validation
- --help
: Show help and exit
Examples:
# Validate training configuration
ideaweaver validate config/training.yaml --type training
# Validate RAG setup
ideaweaver validate config/rag.yaml --type rag
Global Options¶
These options are available for most commands:
--verbose, -v
: Enable verbose output--quiet, -q
: Suppress non-error output--config PATH
: Global configuration file--log-level TEXT
: Set logging level (DEBUG, INFO, WARNING, ERROR)--no-cache
: Disable caching--device TEXT
: Force specific device (cuda, cpu, mps)
Configuration Files¶
Training Configuration¶
# config/training.yaml
model:
name: "microsoft/DialoGPT-medium"
task: "text-generation"
dataset:
name: "your-dataset"
split: "train"
training:
output_dir: "./results"
num_train_epochs: 3
per_device_train_batch_size: 4
learning_rate: 5e-5
save_steps: 500
logging_steps: 100
lora:
rank: 16
alpha: 32
dropout: 0.1
RAG Configuration¶
# config/rag.yaml
vector_store:
type: "chroma"
persist_directory: "./chroma_db"
embeddings:
model: "sentence-transformers/all-MiniLM-L6-v2"
llm:
provider: "openai"
model: "gpt-3.5-turbo"
temperature: 0.7
retrieval:
top_k: 5
similarity_threshold: 0.7
chunking:
chunk_size: 1000
chunk_overlap: 200
Evaluation Configuration¶
# config/evaluation.yaml
model: "path/to/model"
tasks:
- "hellaswag"
- "arc_easy"
- "winogrande"
batch_size: 8
num_fewshot: 5
device: "auto"
output_file: "results.json"
Environment Variables¶
Set these environment variables for full functionality:
# API Keys
export OPENAI_API_KEY="your-openai-key"
export HUGGINGFACE_HUB_TOKEN="your-hf-token"
export ANTHROPIC_API_KEY="your-anthropic-key"
# Experiment Tracking
export WANDB_API_KEY="your-wandb-key"
export MLFLOW_TRACKING_URI="your-mlflow-uri"
# Cloud Services
export AWS_ACCESS_KEY_ID="your-aws-key"
export AWS_SECRET_ACCESS_KEY="your-aws-secret"
# MCP Integrations
export GITHUB_TOKEN="your-github-token"
export SLACK_BOT_TOKEN="your-slack-token"
Exit Codes¶
0
: Success1
: General error2
: Configuration error3
: Model not found4
: Dataset error5
: Training/evaluation error6
: Network/API error