Code Standards and Best Practices¶
Overview¶
This document outlines the coding standards and best practices for contributing to IdeaWeaver. Following these guidelines ensures consistency, maintainability, and high-quality code across the project.
Code Style¶
Python¶
- Follow PEP 8 style guide
- Use type hints for function parameters and return values
- Maximum line length: 88 characters (Black formatter default)
- Use meaningful variable and function names
- Include docstrings for all public functions and classes
Example:
from typing import List, Optional
def process_model_output(
output: List[str],
threshold: float = 0.5,
max_length: Optional[int] = None
) -> List[str]:
"""
Process model output with optional filtering.
Args:
output: List of model output strings
threshold: Confidence threshold for filtering
max_length: Maximum length for each output string
Returns:
List of processed output strings
"""
# Implementation
pass
Documentation¶
- Use Markdown for all documentation
- Include code examples where appropriate
- Keep documentation up-to-date with code changes
- Use clear and concise language
- Include screenshots for UI-related features
Git Workflow¶
Branch Naming¶
- Feature branches:
feature/description
- Bug fixes:
fix/description
- Documentation:
docs/description
- Hotfixes:
hotfix/description
Commit Messages¶
Follow the Conventional Commits specification:
<type>(<scope>): <description>
[optional body]
[optional footer]
Types:
- feat
: New feature
- fix
: Bug fix
- docs
: Documentation changes
- style
: Code style changes
- refactor
: Code refactoring
- test
: Adding or modifying tests
- chore
: Maintenance tasks
Pull Requests¶
- Create a descriptive PR title
- Fill out the PR template completely
- Link related issues
- Request reviews from relevant team members
- Ensure CI checks pass
- Address review comments promptly
Testing¶
Unit Tests¶
- Write tests for all new features
- Maintain minimum 80% code coverage
- Use pytest for testing
- Mock external dependencies
Example:
import pytest
from ideaweaver.core import ModelProcessor
def test_model_processor():
processor = ModelProcessor()
result = processor.process("test input")
assert result is not None
assert isinstance(result, str)
Integration Tests¶
- Test component interactions
- Include end-to-end workflows
- Test error handling
- Verify API endpoints
Security¶
Code Security¶
- Never commit sensitive data
- Use environment variables for secrets
- Validate all user inputs
- Follow security best practices
- Regular security audits
API Security¶
- Implement rate limiting
- Use proper authentication
- Validate API requests
- Handle errors gracefully
- Log security events
Performance¶
Code Optimization¶
- Profile code regularly
- Optimize critical paths
- Use appropriate data structures
- Implement caching where beneficial
- Monitor memory usage
Best Practices¶
- Error Handling
- Use specific exception types
- Provide meaningful error messages
- Log errors appropriately
-
Handle edge cases
-
Logging
- Use appropriate log levels
- Include context in log messages
- Rotate log files
-
Monitor log patterns
-
Configuration
- Use environment variables
- Provide default values
- Validate configuration
- Document all options
Review Process¶
- Self-Review
- Run linters
- Check test coverage
- Verify documentation
-
Test functionality
-
Peer Review
- Code quality
- Performance impact
- Security considerations
- Documentation accuracy